From Ternary Strings to Wiener Indices of Benzenoid Chains
نویسندگان
چکیده
An explicit, non-recursive formula for the Wiener index of any given benzenoid chain is derived, greatly speeding up calculations and rendering it manually manageable, through a novel envisioning of chains as ternary strings. Previous results are encompassed and two completely new and useful ones are obtained, a formula to determine Wiener indices of benzenoid chains in periodic patterns, and another to estimate errors in the Wiener index induced by errors or indeterminate links in the graph.
منابع مشابه
Hosoya polynomials of random benzenoid chains
Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...
متن کاملGeneralized Wiener Indices in Hexagonal Chains
The Wiener Index, or the Wiener Number, also known as the “sum of distances” of a connected graph, is one of the quantities associated with a molecular graph that correlates nicely to physical and chemical properties, and has been studied in depth. An index proposed by Schultz is shown to be related to the Wiener Index for trees, and Ivan Gutman proposed a modification of the Schultz index with...
متن کاملRelation between Wiener–type topological indices of benzenoid molecules
The distance d(u, v|G) between the vertices u and v of a molecular graph G is the length of a shortest u, v-path. We consider a class of Wiener–type topological indices Wλ(G) , defined as the sum of the terms d(u, v|G) λ over all pairs of vertices of G . Several special cases of Wλ(G) , namely for λ = +1 (the original Wiener number) as well as for λ = −2,−1,+1/2,+2 and +3 , were previously stud...
متن کاملOn the tutte polynomial of benzenoid chains
The Tutte polynomial of a graph G, T(G, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. In this paper a simple formula for computing Tutte polynomial of a benzenoid chain is presented.
متن کاملThe Wiener Index and the Szeged Index of Benzenoid Systems in Linear Time
Distance properties of molecular graphs form an important topic in chemical graph theory.1 To justify this statement just recall the famous Wiener index which is also known as the Wiener number. This index is the first2 but also one of the most important topological indices of chemical graphs. Its research is still very active; see recent reviews3,4 and several new results in a volume5 dedicate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 73 شماره
صفحات -
تاریخ انتشار 1997